Note

Some 2,3,4,6-tetra-0-(p-chlorobenzyl)- α -D-hexopyranoses

SHINKITI KOTO*, SHIGERU INADA, NAOHIKO MORISHIMA, AND SHONOSUKE ZEN School of Pharmaceutical Sciences, Kitasato University, Shirokane, Minato-ku, Tokyo 108 (Japan) (Received July 3rd, 1980; accepted for publication, July 19th, 1980)

Recent studies on new glycosylation procedures using such stable precursors as 2,3,4,6-tetra-O-benzyl- α -D-glucopyranose and relatives led us to prepare crystalline 2,3,4,6-tetra-O-(p-chlorobenzyl)- α -D-mannopyranose (2).

Methyl α -D-mannopyranoside was converted into methyl 2,3,4,6-tetra-O-(p-chlorobenzyl)- α -D-mannopyranoside (1) by heating in N,N-dimethylformamide containing p-chlorobenzyl chloride in the presence of sodium hydride. Compound 1 was then hydrolyzed, to give 2, whose yield from the starting material was 53%. The α configuration of the weakly levorotatory 2 was determined by methylation with methyl iodide and silver oxide in HCONMe₂, and measurement of 2 the $J_{C-1,H-1}$ value of the product.

Similarly, highly crystalline 2,3,4,6-tetra-O-(p-chlorobenzyl)- α -D-glucopyranose (4) and -galactopyranose (6) were prepared from methyl α -D-glucopyranoside and β -D-galactopyranoside, respectively, in good yields. The p-chlorobenzyl group was readily removed by hydrogenolysis in acetic acid in the presence of palladium black.

p-Chlorobenzyl chloride, a solid, is much less lachrymatory than benzyl chloride. The O-(p-chlorobenzyl)ated carbohydrates appear to be much more apt to crystallize than the O-benzylated ones; thus, compounds 1, 2, and 3 solidified, whereas the corresponding O-benzyl compounds are syrupy^{3,4}. One recrystallization of crude 4 and 6 afforded configurationally pure compounds, whereas the corresponding O-benzyl derivatives contained an appreciable proportion of the β anomer, detected, after recrystallization, by 13 C-n.m.r. spectroscopy. In acid hydrolysis, the p-chlorobenzyl group is more stable than the methoxyl group of compounds 1, 3, and 5, but it makes the methoxyl group more resistant to hydrolysis than does the benzyl group³.

EXPERIMENTAL

General. — Melting points were determined in an MP-1 melting-point apparatus

^{*}To whom correspondence should be addressed.

TABLE I

PHYSICAL AND ANALYTICAL DATA FOR COMPOUNDS PREPARED

Compound	M.p. (°C)	Recryst. from ^a	[a] ²⁰ (degrees) ^b	[\alpha] ²⁰ (degrees) ^c	Analysis ($\%$)	
					Found C	Н
1	45–47ª		+13	-9	60.43	4.89¢
1- <i>B</i>	81-83f	(Hx)	-31	-32	60.82	5.05e
2	81-82 ^f	(Hx + ip)	-2	19	60.08	4.749
3	42-44 ^d	• • •	+14	÷56	60.86	5.05°
4	153-155f	(ip + EA)	÷10	÷41	60.17	4.919
5	113-1151	(Hx + ip)	+15	+49	60.81	4.94
6	94_95 <i>f</i>	(ip)	+17	+88	60.13	4.76^{g}

[&]quot;Solvents used for recrystallization; EA = ethyl acetate, Hx = hexane, and ip = diisopropyl ether. $^{b}(c 1.0, \text{chloroform})$. $^{c}(c 1.0, \text{pyridine})$. $^{d}\text{Prisms}$. $^{c}\text{Calc}$. for $C_{35}H_{34}Cl_{1}O_{6}$: C. 60.71. H, 4.95%. $^{f}\text{Needles}$. $^{g}\text{Calc}$. for $C_{34}H_{32}Cl_{4}O_{6}$: C, 60.19, H, 4.76%.

(Yanagimoto); uncorrected values are given. Specific rotations were measured at 20° in a jacketed, 1-dm cell by means of a DIP-180 automatic polarimeter (Japan Spectroscopic). Column chromatography was conducted on silica gel (Kanto Kagaku), using solvent systems of benzene-butanone; each fraction was examined by t.l.c. on silica gel (Merck, 7731). The *p*-chlorobenzyl chloride (Tokyo Kasei), sodium hydride (Wako; 50% dispersion in oil), methyl α -D-mannopyranoside (Sigma), methyl α -D-glucopyranoside (Tokyo Kasei), and methyl β -D-galactopyranoside (Sigma) were used without any pretreatment. *N*,*N*-Dimethylformamide (Tokyo Kasei) was distilled before use. Evaporation was conducted under diminished pressure at 35-40°, unless otherwise stated. ¹³C-N.m.r. spectra were recorded with a JEOL-PS-100 spectrometer equipped with a JEOL-EC-100 computer. Physical and analytical data for the compounds prepared are summarized in Table I.

2,3,4,6-Tetra-O-(p-chlorobenzyl)-α-D-mannopyranose (2). — A mixture of methyl α-D-mannopyranoside (2.5 g, 13 mmol), p-chlorobenzyl chloride (17 g, 105 mmol), and sodium hydride dispersion (5.0 g, ~103 mmol) in HCONMe₂ (25 mL) was heated under efficient stirring for 40 min at 85–90°, cooled, filtered through a bed of Kieselguhr G (Merck), and the solid washed with benzene. The filtrate and washings were combined, and evaporated on a boiling-water bath, and the product chromatographed on silica gel (300 g). Elution with the solvent system (100:1, and then 30:1) gave crude, syrupy 1 (9 g), which was heated in a mixture of acetic acid (90 mL) and 3M sulfuric acid (11 mL) under good stirring for 100 min at 80–85°. To the mixture were added cold water (150 mL) and benzene (150 mL) under stirring. The organic layer was successively washed with 5% sodium hydrogencarbonate solution and water, and evaporated, and the residue was chromatographed on silica gel (150 g). After the appearance of unchanged 1 by use of the solvent system (gradient, 60:1 → 40:1), elution with the solvent system (gradient, 20:1 →

296 NOTE

10:1), followed by crystallization from hexane containing disopropyl ether, gave 2 (4.6 g, 53% from the starting material). 13 C-N.m.r. spectroscopy of 2 in CDCl₃ containing Me₄Si showed that the crystals were practically pure (δ 92.4, C-1, $J_{\text{C-1,H-1}}$ 170 Hz).

Compound 2 (300 mg, 0.43 mmol) was refluxed in methanol containing methanesulfonic acid (30 μ L) for 18 h. After neutralization of the acid with sodium hydrogenearbonate, and evaporation, chromatography with the solvent system (gradient, 100:1 \rightarrow 40:1) gave 1 (210 mg, 69%); δ 98.8, C-1, $J_{C-1.H-1}$ 168 Hz, and then the β anomer 1- β (72 mg, 24%); δ 102.6, $J_{C-1.H-1}$ 155 Hz.

On the other hand, methylation of 2 (42.0 mg, 62 μ mol) with methyl iodide (0.1 mL) and silver oxide (30 mg) in HCONMe₂ (0.1 mL) for 16 h at 15° afforded 1 (37.6 mg, 88%) and 1- β (1.1 mg, 2.6%).

Compound 1 (50 mg, 72 μ mol) was hydrogenated at 50 lb. in.⁻² in acetic acid (5 mL) in the presence of palladium black (20 mg) for 16 h at 20°, to give methyl α -D-mannopyranoside (13 mg, 92%), identified by comparison with an authentic specimen.

2,3,4,6-Tetra-O-(p-chlorobenzyl)- α -D-glucopyranose (4). — Methyl α -D-glucopyranoside (0.97 g, 5.0 mmol) was similarly converted into methyl 2,3,4,6-tetra-O-(p-chlorobenzyl)- α -D-glucopyranoside (3) (3.6 g) which was heated in acetic acid (37 mL) and 6M hydrochloric acid (5.5 mL) under stirring for 1 h at 93-97°, to furnish 4 (2.5 g; 74% from the starting material).

2,3,4,6-Tetra-O-(p-chlorobenzyl)- α -D-galactopyranose (6). — Methyl β -D-galactopyranoside (1.79 g, 9.2 mmol) was converted into methyl 2,3,4,6-tetra-O-(p-chlorobenzyl)- β -D-galactopyranoside (5; 6.32 g), which spontaneously crystallized without chromatographic purification. Compound 5 was then hydrolyzed by heating it in acetic acid (63 mL) and 3M sulfuric acid (7.6 mL) for 100 min at 80-85° under stirring, to afford 6 (4.0 g; 64% from the starting material).

REFERENCES

- S. Koto, Y. Hamada, and S. Zen, Chem. Lett., (1975) 578-588; S. Koto, N. Morishima, and S. Zen, ibid., (1976) 61-64, 1109-1110; Bull. Chem. Soc. Jpn., 52 (1979) 784-788; S. Koto, T. Sato, N. Morishima, and S. Zen, ibid., 53 (1980) 1761-1762; J. Leroux and A. S. Perlin, Carbohydr. Res., 47 (1976) c8-c10, 67 (1978) 163-178; W. A. Szarek, H. C. Jarrell, and J. K. N. Jones, ibid., 57 (1977) c13-c16; H. Tsutsumi, Y. Kawai, and Y. Ishido, Chem. Lett., (1978) 629-632; A. A. Pavia, J.-M. Rocheville, and S. N. Ung, Carbohydr. Res., 79 (1980) 79-89.
- K. BOCK, I. LUNDT, AND C. PEDERSEN, Tetrahedron Lett., (1973) 1037-1040; K. BOCK AND C. PEDERSEN, J. Chem. Soc., Perkin Trans. 2, (1974) 293-297; Acta Chem. Scand., Ser. B, 29 (1975) 258-264.
- 3 S. KOTO, N. MORISHIMA, Y. MIYATA, AND S. ZEN, Bull. Chem. Soc. Jpn., 49 (1976) 2639-2640.
- 4 O. T. SCHMIDT, T. AUER, AND H. SCHMADEL, Chem. Ber., 93 (1960) 556-557.